Contents

- 1 Octave Functions
- 1.1 Matrix / Vector related functions
- 1.2 Input/Output functions
- 1.3 System functions
- 1.4 Data type related functions
- 1.5 Testing functions
- 1.6 String functions
- 1.7 Conversion functions
- 1.8 Character class functions
- 1.9 Cell array retlated functions

Octave Functions

Matrix / Vector related functions

Returns inverse of matrix `a' given as argument

| $\operatorname{inv}(a)$ | Same as inverse(a). Returns inverse of matrix `a' given as argument \\ \hline \end{tabular} \begin{tabular}{\|l|l|} \hline \(\operatorname{det}(\mathrm{a})\) & Returns determinant of matrix `a' given as argument |
| :--- | :--- |

| linspace (a, b, c) | Returns row vector contains 'c' uniformly distributed values between `a' and ' \(b\) ' given as \\ arguments. If \(a<b\) then values are arranged in descending order. Argument \(c\) is optional \\ and by default 100 values are generated between a and \(b\) in case third argument is not \\ present. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l|l|} \hline \(\operatorname{rand}(\mathrm{a}, \mathrm{b})\) & \begin{tabular}{l} Returns matrix of dimensions axb with random numbers as elements of matrix. If \\ argument \(b\) is omitted then it returns square matrix of dimension axa. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline eye \((\mathrm{a}, \mathrm{b})\) & \begin{tabular}{l} Returns indentity matrix of dimensions axb. If argument b is not supplied then returns \\ square identity matrix of dimensions \(a x a\). \end{tabular} \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline NA \((a, b)\) & \begin{tabular}{l} NA() function can be used to generate matrix of special Not Available('NA') data type. \\ The returned matrix is of dimensions axb with all values of matrix of type NA. In case we \\ dont specify argument b then returned matrix is square matrix of dimensions axa. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline ndims(a) & \begin{tabular}{l} Returns number of dimensions of argument `a' passed to it. Usually all values are stored as
 matrices and hence minimum 2 is printed when we call ndims() |
| :--- | :--- |
| rows() | Returns number of rows in matrix / array passed as argument. |
| columns() | Returns number of columns in matrix / array passed as argument |

numel ()	Returns number of elements in matrix / array passed as argument

length ()	Returns length of the object. For strings length would mean number of characters in string. For matrices length returns number of rows or columns whichever is greater.

size()	Returns a 1x2 matrix with number of rows and columns. If we call size() with another argument, say 1 or 2, then it returns number of elements in that dimension of matrix.
zeros()	Create a matrix of size specified by arguments with all values as 0.

true()	Returns matrix of true values. The dimensions of matrix depend on arguments supplied to this function.

false()	Returns matrix of false values. The dimensions of matrix depend on arguments supplied to this function.

Input/Output functions

$\operatorname{plot}()$	Plot function can be used to draw graph from values of a vector. - If we call plot with only one argument of dimension Nx1 then plot with draw graph with index of values on X-axis and values of argument on Y-axis. - In case we call plot with only one argument of dimension $\mathrm{N} * \mathrm{M}$ then plot with draw M graphs of each $\mathrm{N} * 1$ column vector present in the argument, each with different color on same drawing area. - If we call plot with two arguments each with dimensions 1xN then plot will draw graph with values of first argument as X-values and values of second argument as Y-values for points of graph.

- If we call plot with three arguments each with dimensions 1 xN then plot will draw two graphs First graph with values of first argument as X -values and values of second argument as Y -values and second graph with values of first argument as X -values and values of third argument as Y -values.
- If we call plot with four arguments each with dimensions 1 xN then plot will draw two graphs. First graph with values of first argument as X -values and values of second argument as Y -values and second graph with values of third argument as X -values and values of fourth argument as Y -values.

It is very similar to C programming language, printf() function. It can be used to generate formatted output.
output_max_field_width()
Both functions set / display number of digits to display after decimal point in output
output_precision()

> Same as output_max_field_width ()

Used to specify / find whether octave should print matrices with many columns split among various lines or not.
split_long_rows()
struct_levels_to_print()
Can be used to query or set the internal variable that specifies the number of structure levels to display.

System functions

exit()	It ends octave with exit code passed as argument to function.
quit()	Same as exit, it ends octave with exit code passed as argument to function.

Data type related functions

typeinfo()	If called without any argument it prints list of all currently loaded data types. If called with argument it returns data type of argument.
class()	Returns the class of expression passed as argument. The return value is in string format.

cast() function can be used to covert value of one class to other. That is it can be used to convert double into char and vice-versa. It is important to understand that when we convert cast() char to double we will get ascii value of char and not parsed decimal value. Hence char 'a' when coverted to double will give us value 97 . Similarly char ' 0 ' when converted to double gives us value ' 48 '.
sizeof()

Returns number of bytes required to store value in memory
size_equal()

Returns true if size of all arguments passed to this function are same.

int8()

Converts argument to 8-bit integer type.
uint8()

Converts argument to unsigned 8-bit integer type.
int16()
Converts argument to 16-bit integer type.
uint16()

Converts argument to unsigned 16-bit integer type
int32()

Converts argument to signed 32-bit integer type
uint32()

Converts argument to unsigned 32-bit integer type
int64()

Converts argument to signed 64-bit integer type
uint64()

Converts argument to unsigned 64-bit integer type

$\operatorname{intmax}()$

Expects a integer class type as argument (ex "int8", "int16", etc.) and returns maximum possible integer that can be represented by that type.
intmin()
logical()
Expects a integer class type as argument (ex "int8", "int16", etc.) and returns minimum possible integer that can be represented by that type.
$\operatorname{logical}()$

Converts given matrix to its logical equivalent true or false matrix. Only 0 is treated as false, rest all other values are converted to true.
$\operatorname{char}($)

[^0]
Testing functions

isinteger()
isempty()

Returns true if object given as argument is integer. Note that normal constants $4,8,14$ etc. are not integers as by default constants are treated as double.

isna() functions takes one matrix argument and returns another matrix of same dimension. If any value of matrix passed as argument is data type Not Available('NA') then corresponding values in returned matrix are 1 and all other values are 0 . Note that even Inf and NaN are not treated as NA. Hence only when original value is NA, 1 is returned in its place.

Function isa() expects two arguments and checks whether first argument belongs to class described by second argument. Second argument must be class name in string format. If the object belongs to class name passed as second argument then return value is integer ' 1 ' else return value is integer ' 0 '

isnumeric()
isreal()
iscomplex()

Returns true if argument supplied is numeric

Returns true if argument supplied is real number (not complex number)
ismatrix()

Returns true if argument supplied is matrix

Returns true if argument supplied is vector

Returns true if argument supplied is scalar, not vector
issquare()

Returns dimension (width or height) of matrix if it is square matrix, else it returns 0
issymmetric()
Returns zero if matrix is not symmetric, non-zero value other wise.

islogical()

Returns true is argument is logical, false otherwise

Returns true if argument is prime, false otherwise

Returns true if argument is structure

isfield(a,b)	Returns true if a is structure containing b as element. a must be structure and b must be string
isvarname(a)	Returns true if string `a' is valid variable name \\ \hline \hline isglobal(a) & Returns true if variable name `a' is global
exist(a,b)	Returns non-zero value if name specified by string `a' is already used as function / \\ variable / file name in local path. Optional parameter `b' can take values `"var"', \\ '"builtin"','"file"' and `"dir"' in case we want to restrict search to specific domain. Use `help exist' to understand difference between different non-zero return values of function.
isequal()	Returns true if all arguments passed to this function are equal.
isequalwithequalnans ()	Returns true if all arugments passed to this function are equal. For purpose of comparison this function would treat NaN as equal to NaN.

String functions

$\operatorname{strcmp}(a, b)$	Compares strings a and b. Unline C strcmp, this function returns $\mathbf{1}$ if strings are same and $\mathbf{0}$ otherwise
$\operatorname{strcmpi}(\mathrm{a}, \mathrm{b})$	Compares strings a and b ignoring case. Unline \mathbf{C} strcasecmp, this function returns $\mathbf{1}$ if strings are same and $\mathbf{0}$ otherwise

strncmp (a, b, N)	Compares first N characters of a and b. Unline C strncmp, this function returns $\mathbf{1}$ if strings are same and 0 otherwise

strncmpi($a, b, \mathrm{~N})$	Compares first N characters of a and b ignoring case. Unline C strncasecmp, this function returns 1 if strings are same and $\mathbf{0}$ otherwise

index (a, b)	Find position of first occurrence of b in a.

rindex (a, b)

Find position of last occurrence b in a .

```
strrep(s,x,y)
```

Replaces all occurrences of the substring x of the string s with the string y .
substr(s,offset,len)

Return the substring of s which starts at character number offset and is len characters long. If offset is negative, extraction starts that far from the end of the string. If len is

Conversion functions

$\operatorname{bin} 2 \operatorname{dec}(\mathrm{~s})$

Return the decimal number corresponding to the binary number stored in the string s.
dec2bin(n,len)

$\operatorname{dec} 2 h e x(n, l e n)$

$\operatorname{hex} 2 \operatorname{dec}(\mathrm{~s})$

dec2base(n,b,len)

base2dec (s,b)

str2double(str,cdelim,rdelim,ddelim)

str2num(s)
toascii(s)

Convert the string s to a number.

[^1]| tolower(s) |
| :--- |
| toupper(s) |

Return a copy of the string s, with each upper-case character replaced by the corresponding lower-case one.

Return a copy of the string s, with each lower-case character replaced by the corresponding upper-case one.
do_string_escapes(string)
undo_string_escapes(s)

Converts special characters in strings back to their escaped forms.
This is like PHP addslashes() function.

Converts index of multi-dimensional matrix into linear index. Use 'help ind2sub' to understand the usage / purpose of this function properly.
sub2ind()

Convert special characters in string to their escaped forms. This is like PHP stripslashes() function.
ind2sub()
Converts linear index of multi-dimensional matrix into
multi-dimensional index. Use `help sub2 ind' for detailed help
on how to use this function.

Character class functions

Below mentioned functions operate on string arrays and return matrices of zeros and ones. Elements that are nonzero indicate that the condition was true for the corresponding character in the string array.

isalnum(s)	Return 1 for characters that are letters or digits. (isalpha(s) or isdigit(s) is true)

isalpha(s)	Return true for characters that are letters (isupper(s) or islower(s) is true)
isletter(s)	Same as isalpha(s)
isascii(s)	Return 1 for characters that are ASCII

iscntrl(s)	Return 1 for control characters.
isdigit(s)	Return 1 for characters that are decimal digits.
isgraph(s)	Return 1 for printable characters (but not the space character).
islower(s)	Return 1 for characters that are lower case letters.

isprint(s)	Return 1 for printable characters (including the space character)
ispunct(s)	Return 1 for punctuation characters.

isspace(s)	Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab).

Cell array retlated functions

fieldnames()	Returns a cell array of strings naming the elements of the structure passed as argument. Argument passed to this function must be a structure.

[^0]: Converts integer argument supplied to character value. If argument is matrix then result is array of strings

[^1]: Return ASCII representation of s in a matrix. For example, toascii ("ASCII") $=>$ [65, 83, 67, 73, 73]

